Table 5-7 gives a close approximation of the equal-tempered scale over one octave when the sample size is 16 bytes. The " Period " column gives the period count you enter into the period register . The length register AUDxLEN should be set to 8 (16 bytes = 8 words). The sample should represent one cycle of the waveform. Table 5-7: Equal-tempered Octave for a 16 Byte Sample NTSC PAL Ideal Actual NTSC Actual PAL Period Period Note Frequency Frequency Frequency ------ ------ ---- --------- ----------- ---------- 254 252 A 880.0 880.8 879.7 240 238 A# 932.3 932.2 931.4 226 224 B 987.8 989.9 989.6 214 212 C 1046.5 1045.4 1045.7 202 200 C# 1108.7 1107.5 1108.4 190 189 D 1174.7 1177.5 1172.9 180 178 D# 1244.5 1242.9 1245.4 170 168 E 1318.5 1316.0 1319.5 160 159 F 1396.9 1398.3 1394.2 151 150 F# 1480.0 1481.6 1477.9 143 141 G 1568.0 1564.5 1572.2 135 133 G# 1661.2 1657.2 1666.8 The table above shows the period values to use with a 16 byte sample to make tones in the second octave above middle C. To generate the tones in the lower octaves, there are two methods you can use, doubling the period value or doubling the sample size. When you double the period , the time between each sample is doubled so the sample takes twice as long to play. This means the frequency of the tone generated is cut in half which gives you the next lowest octave. Thus, if you play a C with a period value of 214, then playing the same sample with a period value of 428 will play a C in the next lower octave. Likewise, when you double the sample size, it will take twice as long to play back the whole sample and the frequency of the tone generated will be in the next lowest octave. Thus, if you have an 8 byte sample and a 16 byte sample of the same waveform played at the same speed, the 16 byte sample will be an octave lower. A sample for an equal-tempered scale typically represents one full cycle of a note. To avoid aliasing distortion with these samples you should use period values in the range 124-256 only. Periods from 124-256 correspond to playback rates in the range 14-28K samples per second which makes the most effective use of the Amiga's 7 KHz cut-off filter to prevent noise. To stay within this range you will need a different sample for each octave. If you cannot use a different sample for each octave, then you will have to adjust the period value over its full range 124-65536. This is easier for the programmer but can produce undesirable high-frequency noise in the resulting tone. Read the section called Aliasing Distortion for more about this. The values in Table 5-7 were generated using the formula shown below. To calculate the tone generated with a given sample size and period use: Clock Constant 3579545 Frequency = --------------------- = ----------- = 880.8 Hz Sample Bytes * Period 16 * Period The clock constant in an NTSC system is 3579545 ticks per second. In a PAL system, the clock constant is 3546895 ticks per second. Sample bytes is the number of bytes in one cycle of the waveform sample. (The clock constant is derived from dividing the system clock value by 2. The value will vary when using an external system clock, such as a genlock.) Using the formula above you can generate the values needed for the even-tempered scale for any arbitrary sample. Table 5-8 gives a close approximation of a five octave even tempered-scale using five samples. The values were derived using the formula above. Notice that in each octave period values are the same but the sample size is halved. The samples listed represent a simple triangular wave form. Table 5-8: Five Octave Even-tempered Scale NTSC PAL Ideal Actual NTSC Actual PAL Period Period Note Frequency Frequency Frequency ------ ------ ---- --------- ----------- ---------- 254 252 A 55.00 55.05 54.98 240 238 A# 58.27 58.26 58.21 226 224 B 61.73 61.87 61.85 214 212 C 65.40 65.34 65.35 202 200 C# 69.29 69.22 69.27 190 189 D 73.41 73.59 73.30 180 178 D# 77.78 77.68 77.83 170 168 E 82.40 82.25 82.47 160 159 F 87.30 87.39 87.13 151 150 F# 92.49 92.60 92.36 143 141 G 98.00 97.78 98.26 135 133 G# 103.82 103.57 104.17 Sample size = 256 bytes, AUDxLEN = 128 254 252 A 110.00 110.10 109.96 240 238 A# 116.54 116.52 116.43 226 224 B 123.47 123.74 123.70 214 212 C 130.81 130.68 130.71 202 200 C# 138.59 138.44 138.55 190 189 D 146.83 147.18 146.61 180 178 D# 155.56 155.36 155.67 170 168 E 164.81 164.50 164.94 160 159 F 174.61 174.78 174.27 151 150 F# 184.99 185.20 184.73 143 141 G 196.00 195.56 196.52 135 133 G# 207.65 207.15 208.35 Sample size = 128 bytes, AUDxLEN = 64 254 252 A 220.00 220.20 219.92 240 238 A# 233.08 233.04 232.86 226 224 B 246.94 247.48 247.41 214 212 C 261.63 261.36 261.42 202 200 C# 277.18 276.88 277.10 190 189 D 293.66 294.37 293.23 180 178 D# 311.13 310.72 311.35 170 168 E 329.63 329.00 329.88 160 159 F 349.23 349.56 348.55 151 150 F# 369.99 370.40 369.47 143 141 G 392.00 391.12 393.05 135 133 G# 415.30 414.30 416.70 Sample size = 64 bytes, AUDxLEN = 32 254 252 A 440.0 440.4 439.8 240 238 A# 466.16 466.09 465.72 226 224 B 493.88 494.96 494.82 214 212 C 523.25 522.71 522.83 202 200 C# 554.37 553.77 554.20 190 189 D 587.33 588.74 586.46 180 178 D# 622.25 621.45 622.70 170 168 E 659.26 658.00 659.76 160 159 F 698.46 699.13 697.11 151 150 F# 739.99 740.80 738.94 143 141 G 783.99 782.24 786.10 135 133 G# 830.61 828.60 833.39 Sample size = 32 bytes, AUDxLEN = 16 254 252 A 880.0 880.8 879.7 240 238 A# 932.3 932.2 931.4 226 224 B 987.8 989.9 989.6 214 212 C 1046.5 1045.4 1045.7 202 200 C# 1108.7 1107.5 1108.4 190 189 D 1174.7 1177.5 1172.9 180 178 D# 1244.5 1242.9 1245.4 170 168 E 1318.5 1316.0 1319.5 160 159 F 1396.9 1398.3 1394.2 151 150 F# 1480.0 1481.6 1477.9 143 141 G 1568.0 1564.5 1572.2 135 133 G# 1661.2 1657.2 1666.8 Sample size = 16 bytes, AUDxLEN = 8 256 Byte Sample --------------- 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98-100-102-104-106-108-110-112-114-116-118-120-122-124-126 -127-126-124-122-120-118-116-114-112-110-108-106-104-102-100 -98 -96 -94 -92 -90 -88 -86 -84 -82 -80 -78 -76 -74 -72 -70 -68 -66 -64 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 128 Byte Sample --------------- 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 -127-124-120-116-112-108-104-100 -96 -92 -88 -84 -80 -76 -72 -68 -64 -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 64 Byte Sample -------------- 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96-104-112-120 -127-120-112-104 -96 -88 -80 -72 -64 -56 -48 -40 -32 -24 -16 -8 32 Byte Sample -------------- 0 16 32 48 64 80 96 112 128 112 96 80 64 48 32 16 0 -16 -32 -48 -64 -80 -96-112-127-112 -96 -80 -64 -48 -32 -16 16 Byte Sample -------------- 0 32 64 96 128 96 64 32 0 -32 -64 -96-127 -96 -64 -32